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CAVITY AEROACOUSTICS’

Richard E. Dix

Calspan Corporation, AEDC Operations
Amold Air Force Base, Tennessee

and _
Carroil Butier . %

AFATLFXA, Egiin AFB, Flerida -

INTRODUCTION L

Aircraft design decisions often depend on the two factors, -weight and drag. Since the first powered
flight, aircraft designers have smoothed, faired, retracted, and hidden as many external -
excrescences as possible in the quest for additional vehicle performance and efficiency. However, .
the jocular observation that “there is no free lunch” gcomes a real conclusion as the designer
dutifully pursues the aerodynamic grail. As an example £nsider the retraction or hiding of items in
a cavity that is closed and smooth to the flow over the body. At an appropriate time, doors or
panels open as part of a desired operational sequence, and the storage volume, or cavity, together
-, with the contents, are exposed to the external fiow. Regardless of the purpose or contents of the
xe O 7 cavity, two of the important flow phenomena that occur with exposure of the cavity are: 1) the
development of a shear layer within which the transition cccurs from the stagnant cavity
environment {0 the active external flow; and 2) the creation of a concomitant fluctuating pressure
environment in the cavity. The fluctuations often resonate at characteristic frequencies, and are
generally detectable as audible tor.as, leading to the term “agroacoustic” to describe the fluid
dynamic environment. Over the years, various investigators have focused on the action of the shear
layer passing over the cavity (a vortex-acoustic coupling) as a cause of the aeroacoustic
phenomena (Refs. 1-3). In 1970, Covert (Ref. 4) offered a good historical perspective, citing
Strouhal, Rayleigh, and Kohirausch in works dating back to the 1870s, 1880s, and 1890s. More
recently, Stallings and Wilcox (Ref. 5) at NASA/Langley summarized current models of supersonic
flow over shallow (closed flow), medium (trar:sitional flow), and deep (open flow) cavities. illustrated
in Fig. 1.

Many sets of experiments have been completed in studies of the cavity aeroacoustic environment. /
among these Rossiter's predictions of the modal frequencies (Ref. 6) and Clark's studies of

techniques of controlling the modal amplitudes (Ref. 7). The effect of cavity shape on the static —————fem——
pressure distribution over the suiiaces of the cavity was reported by Plentovich (Ref. 8). and _QL__.
Stallings 2nd Wilcox (Ref. 5), and computational fiuid dynamic (CFD) efforts to predict cavity flow

fields have been descried by Suhs (Ref. 9), Rizzetta (Ref. 10), and Baysal (Ref. 11). These Qi
documents represent only a fraction of the active authors and programs setting about to better at
define, predict, and interact with cavity aeroacoustic phenomena. The present paper. for example,
documents a program of experiments that has been underway for three years at the Arnold
Engineering Development Center (AEDC), and has resuited in a rather large data base describing
the aeroacoustic environment associated with cavities of three different length-to-height ratios (L/H),
equipped with a variety of acoustic suppression devices and doors, and exposed to external flows of
subsonic to supersonic speeds. I Availapuity Codes

- Avgil andjor
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*  The research reported herein was performed by the Amold Engineering Development Center
(AEDC), Air Force Systems Command. Work and analysis for this research were done by personnel
of Calspan CorporatiovAEDC Operations, operating contract for the AZDC aerospace flight
dynamics facilities. Further reproduction 1s authorized to satisfy needs of the U. S. Government.
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SHEAR LAYER

Aerodynamic Loads

Both the presence of the shear layer between tha open cavity volume and the external fiow field
and the existence of tones in the cavity represent challenges to aircraft and systems designers. If,
for instance, it is desired to move a body out of a cavity, the variation of aerodynamic forces acting
on the body as it passes through the shear layer must be known. In 1983, Stalings at
NASA/Langley reported large changes in loads acting on a store pussing through a cavity shear
layer (Ref. 12). The loads were noted to depend on the length-to-height ratio (L'H) of the cavity,
Fig. 2. Using a device designed to translate the body in small increments along one axis only (the
“Z-Rig,” Ref. 13, Fig. 3), Dix at the Arnold Engineering Development Center (AEDC) confirmed the
existance of substantial gradients in body loads when passing through the shear layer, Fig. 4 (Ref.
13). The importance of the gradients must be assessed case by cage, but one must clearly proceed
with caution if tempted to construct a simple curve through three data points measured at coarse
intervals as indicated in Fig. 4.

Strong vaniations in aerodynamic loads could affect somewhat the structural integrity of any body
passing through a shear layer, but perhaps the most critical question is the influence on the
trajectory of a body released inside the cavity and passing outward through the shear layer. At the
AEDC, Dix has measurec and calculated trajectories of a store jettisoned out of a cavity.
Trajectories were measured using the Captive Trajectory Support (CTS) system in the 4-ft transonic
wind tunnel AEDC Aerodynamic Wind Tunnel (4T), Fig. 5§ and Ref. 14. Several sets of cavity
dimensions (L/H), cavity door configurations, and flow suppression devices were used to vary the
configuration of the cavity, but the ejection conditions were constant. Store mation was predicted
from a point at the end of a Z-axis ejector stroke. The end-of-stroke translational velocity (Vzegs)
was 30 ft/sec in the Z-axis direction (down and away from the cavity), and the angular pitching
vewcity of the store was -1 rad/sec (nose down). During the samé test, aerodynamic loads acting
on the store at a spatial grid of locations in and near the cavity were recorded to provide a basis for
predictions of store separation trajectories using post-test computational techniques. The post-test
computer code, developed by Morgret (Ref. 15) called the Muiltiple Degree-of-freedom Interpolation
and Trajectory Generation Program, or MDITGP, is in fact a code similar to the code used to
predict trajectories in the wind tunnel using the CTS system. During a test, forces and moments
acting on the store in the wind tunnel are used as inputs to the code, while for the post-test
trajectory predictions, the store loads inputs are interpolated from the grid data. A clear advantage
of the post-test computational technique is the ease with which initial conditions, such as the and-

of-stroke store velocities, can be changed to predict many differant trajectories from the same set -

ot wind tunnel data. A description of the MDITGP is contained in Ref. 15.

Using different end-of-stroke store velocities, it was possible to gain an appreciation of the effect of
a cavity shear layer on the trajectory of a jeftiscned store. As illustrated in Fig. 6. with the end-of-
stroke Z-axis translational velocity above approximately 1.5 percent of the free-stream velocity,
store motion was negligibly affected by passing through the shear layer, so long as the end-of-
stroke pitch velocity, 8, was -1 rad/sec (nose-down). When the initial pitch rate of the store was - 1
< 6 s 0 (or even worse, nose-up, § > 0), passage through the shear layer was not smooth, and
jettison under these conditions would not be considered safe. Clearly, to assure reliable traverse
through the shear layer at all jettison conditions, the store would have to be constrained in some
way, such as with the use of a trapeze, a device dating back at least as far as the JU 87 Stuka of
1835. Constraint has been used much more recently, as for example, on the F.106 and the

Tornado.

Acoustics

The cause-and-effect relationship between the shear layer and the acoustic-fraquency fluctuations
in the cavity has been studied extensively, but is not completely understood. Under contract to the
U. S. Air Force, Heller and Bliss, of the firm of Bolt, Beranek, and Newman conducted a series of
water table studies in 1972 (Ref. 16) during which it was demonstrated that the expansion of an
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approaching supersonic flow into the cavity (for cavities of appropriate L/H values) would generate a
pressure disturbance or wave that would travel to the downstream bulkhead, where it would be
reflected. As fluid was forced from the cavity by the brief increase in pressure, the shock at the
downstream edge of the cavity opening detached. When the pressure was reduced by the refiection
and mass ejection, the shock aguin attaciied to the downstream edge. Meanwhile, the forward
traveling reflection forced the shear layer away from the cavity until expansion at the upstream adge
again took place, and the cycle began anew. A sketch illustrating the above model is shown in Fig.
7.

Further experimentation by Heller and Bliss showed that the fluctuating shear layer could be
stabilized through the use of various baffles in the cavity and bulkhead edge shaping. Unfortunately,
the entire effort was experimental, not at all proceeding from fundamental fluid-dynamic relation-
ships. Consequantly, no attempt was made to predict frequencies or amplitudes of the acoustic-
frequency pressure oscillations in the cavity.

The flow expansion-compression-gjection model appeals to intuition, and has been proffered by
many investigators. Indeed, fluctuating pressures acting on the surfaces of flat plate and cavity
models have been observed by both Dix at the AEDC (Ref. 13) and Plentovich at NASA/Langley
(Ref. 8). In both studies, conventional measurements of static pressures acting on surfaces in
steady flow were made, with the disappointing result that repeatability was poor. A sketch of the
AEDC model is shown in Fig. 8, and a typical profile of surface pressure coefficient aiong the
centerline of the plate-cavity model with LH = 4.5 is shown in Fig. 9, for a transonic condition.
There are actually 12 profiles shown in Fig. 9, recorded at random intervals of 20 to 60 sec.
Repeatability on the plate upstream of the cawvity is excellent - well within the quoted statistical 95-
percent confidence interval for one standard deviation of the pressure coefficient. i.e., a C; of
+0.01. In the cavity, the data points indicate decreasing repeatability with increasing X/L. On the
plate downstream of the cavity, a convergence toward acceptable repeatability occurs. Sample
profiles of both statistical mean and standard daviations are shown in Figs. 10a and 10b,
respectively.

When dynamic pressure transducers are used to sense the fluctuating components of surface
pressures, there is convincing correlation between the power spectra in the frequency domain at
various locations and the standard deviation profile determined from the 12 repeat points. Sample
spectra are shown in Fig. 11 for several locations on the plate/cavity model. Near the downstream
wall in the cavity, where the one-standard-deviation profile is maximum in value, the modal and
broadband amplitudes are greatest, as are the overall root-mean-square (RMS) levels. Consistently,
near the upstream wall in the cavity, both low standard deviation in the static measurements and -
lower modal and RMS levels of fluctuating pressures are observed.

ACTOUSTIC PREDICTIONS

In his 1952 RAS paper, Rossiter offers an empirical method of predicting modal frequencies,

V(im - y)
f= - 7
L(l L1l Mg)*(_g) (Ref. 6).
2 \A

The influence of the shear layer is addressed via the vortex velacity ratio, and cavity shape in the
flow direction is acknowledged through the y term, which Rossiter presents as a function of cavity
L/H. When Rossiter's values of y are displayed graphically as a function of LM, a mathematical
relationship is difficult to propose for the purpose of interpolation and/or extrapolation, Fig. 12. For
example, the cavities used by the authors in a recent set of expenments require both nterpofation
and extrapolation. Both first and second-order relationships wera attempted, with mixed results.
Interpolation via either linear or parabolic relationships yie!ded similar values of y, but extrapolation
beyond the range of Rossiter's results could be undertaken only subjectively (Fig. 12).
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Comparison of frequency predictions with data from the recent AEDC wind tunnel experiments
illugtrates the limitation (Fig. 13). Tonal frequencies in a deep cavity (L/H = 4.5) are predicted quite
well for modes 1 and 2 through M = 1,20, but lass well for the third and higher modes.
Furthermore, the predicted frequencies are underestimated for all modes at Mach numbers greater
than 1.20, which happens to be the limit of Rossiter’s data base. The trend of prediction Quality 1S
downward as the height of the cavity decreases (Fig. 13b, LM = 9.0), but the igsue of y choice
becomes moot for a most shallow cavity of UH = 14.4, iliustrated in Fig. 13c, for which no sharp
tones are detected. Of course Russiter’s data base is also limited to UH = 10.

Amplitude predictions represent a much more complicated situation. It may be inferred from data in
the literature that the amplitude of a tone, expressed as a static pressure coefficient, is dependent
on many parameters, 6.9.,

tc
c,= cp( -L— , x/L, L/H,W/H, M',Q/H.Y) ,

where L, W, and H are cavity dimensions, 8 is the displacement thickness of the approaching
boundary layer, ce is the free-stream speed of sound, t is time, x is the axial length from the
leading edge of the cavity to a location in the cavity, and y is the ratic of specific heats.

Recent AEDC data confirm no strong effect of unit Reynolds number (Fig. 14) and of Mach number
(Fig. 15). Howevaer, tonal amplitude can be affected by modsl size. as cbserved by Shaw (Re!. 17).
Using the authors' generic plate/cavity model (Fig. 8), filler blocks were installed which decreased
the dimensions of the cavity in small steps, while maintaining the shape of the cavity, i.e. the LH
and /W ratios were constant (W = cavity width). The same pressure transducer was used in ail
measurerments by mounting it in the same relative location in each cavity. With the size ratio, or
scale factor. represented by A, Shaw's data can be shown in graphical form as in Fig. 16. It must be -
- noted that the boundary layer at the leading edge of the cavity opening was constant, since the
inserts were installed beginning at the downstream end of the cavity. With so many parameters
nteracting, development of an amgiitude-prediction algorithm will be difficult, indeed. A research
aeffort is underway at the AEDC to attempt such a correlation.

MOOULATION OF THE CAVITY ACOUSTICS

A large part of the authors' series of wind tunnel experiments at the AEDC has been a study of the
effectiveness of various techniques in modulating the cavity aercacoustic environment. Two passive
devices wera evaluated: 1) spoiler devices mounted at or near the leading edge of the cavity, and
2) 45-deg ramp surtaces installed in the cavity at the downstream wall, illustrated in Fig. 17. Of
course, cavities -are usually equipped with doors, and several types were also included in the
experiments (Fig. 18). Clearly, a very large data base was compiled as the many combinations of
these devicas were evaluated, and it will be possible to present only a small amount of the data.

Spoller and Door Effects on Cavity Aeroacoustics

The effectiveness of a spoiler erected perpendicular to the flow at the leading edge of the cavity
opening in modulating or suppressing pressurg fluctuations in the cavity of an F-111 aircraft was
described by Clark (Refs. 7 and 18). Although Clark identified the superior effectiveness of a
combined leading-edge sawtooth spoiler and rear butkhead ramp (Fig. 19), the internal ramp
requires a cavity length that is longer than otherwise required, and is therefore not regardad with
favor by the structural designer. Consequently, only spoiler-door combinations are described here.
Three types of data sugport conclusions about the effactiveness of spoiller-door combinations, and
will be discussed here.




Static Pressure Distribution

First, static pressure measuremants taken along the longitudinal centerline of the cavity walls and
ceiling can be used to identify the regions of high and low aerodynamic pressure acting on a body
in the cavity that strongly influence the subsequent behavior of the body. In the case of a store
jettisoned from a cavity, the influence of a properly designed spoiler can be extremely beneficial.
For example, in Fig. 20, the influence of a sawtooth spoiler mounted at the leading edge of a cavity
of UH = 4.5, and in the presence of square-leading-edge bifold doors open to 90 deg (SBF 90) is
illustrated for a transonic Mach number. Two heights of the sawtooth spoiler were used during the
test, one about three times the boundary-layer height (36) and one approximately equal to the
boundary layer (15). For comparison, the centerline pressure distribution of the clean cavity (no
spoilers, no doors) is also shown. in this case, the store madel is suspended 4.5 store diameters
below the cavity opening, as if just jettisoned. Note that in the clean cavity, the pressure distribution
is benign over 60 percent of the length of the cavity, but that near the rear bulkhead, the stagnation
of flow causes a high pressure to build in the region of the cavity nearest the tail fins of a typical
store. With the 18§ spotler installed, there is a reduction in surface pressure to below free-stream
static throughout the cavity, and a significant reduction in the stagnation region. This influence is
made stronger when the 38 spoiler is installed.

Store Loads

Spoiler influence is also illustrated in Fig. 21 using the second type of data, store aerodynamic
loads. Store loads were measured using a strain-gage balance insida the sting-mounted store
model. The important pitching moment is almost neutral as the store leaves the clean cavity. When
the 15 spoiler is installed, the desirable nose-down pitch is improved, and with the 38 spoiler,
dramatically improved. Unfortunately, the benefit does not remain as Mach number increases, and
at low supersonic conditions, the influences of a spoiler are indistinguishabla from the clean cavity

(Fig. 22).-

That the spoiler influence is not so much dependent on the type of doors but rather on the leading
edge shape can be seen in Figure 23. The 38 sawtooth spailer was mounted on the LH = 90
cavity with three gifferent doors: square leading-edge single fold, or “cafe”, doors open to 90 deg
(SC 90); the SBF 80 doors mentioned above; and tapered-leading-edge cafe doors open to 90 deg
(TC 90). The spoiler effect is the same for the square leading-edge doors, but significantly less
effective for the tapered leading-edge doors until the low supersanic regime, where the shock
structures emanating from the doors dominate the store loads. These loads are summarized as a
function of Mach Number in Fig. 23b.

While the qualitative effects of spoilers and doors on surface pressures and store loads are quite
understandable from the aerodynamist's intuition, what is not available is an easy-to-use method of
predicting the magnitude of the effects. CFD tachniquaes can be brought to bear on the problem, but
the complex mesh that must be defined, with separate grids for each component, drive computing
costs to exarbitant levels.

Acoustic Environment

The third measure of spoiler/door influence is the acoustic environment of the cavity. Advances in
transducer technology have reduced the differences between “static” and “unsteady” pressure-
measyring techniques to largely a matter of where the transducer is located. In most wind tunnei
models, internal volume is severely limited, so transducers are usuclly located outside the model
and connected to the orifice on the model via small tubes. The output voitage of the transducer is
sampled tens of thousands of times each second for a period of time considered adequate to
determine a valid mean value of the pressure at the orifice. Unsteady, or fluctuating pressures are
snsed in much the same way, except that contemporary transducers are self-contained in a
relatively small package that is mounted directly in the surface of the madel.




Ouring the AEDC cavity tests, a towi of 45 transducers ware mounted in the plate/cavity model,
most serving as altarnates in case of loss of signal from an adjscent transducer. Along the
longitudinal centerline of the cavity, the transducers were mounted with a spacing of approximately
0.9-in. center-to-center (Fig. 24). The output of each transducer was recorded 10,000 times each
second for 5 secs. Data were reduced via FFT techniques using 1,024-point ensembles, 30 that the
bandwidth of the analysis was 9.77 Hz.

As a sampla of the data, the effectiveness of a spoiler in modulating the tonal amplitudas sensed by
transducer number 16 at the rear bulkhead of a deep cavity (LH = 4.5) ig illustrated in Fig. 25 for a
transonic condition. (Spoiler effectiveness in a shallow cavity, say L/H = 9.0, at the same condition
is not as noticeable as for the deep cavity since the tones diminish as L/H is decreased.) The
noise-reduction effectiveness of the coarse sawtooth and the fine sawtooth 38 spoilers is compared
in Fig. 25b. The ordinate, APrus/Qm represents the differance i the overall SPL (coverted to an
rms pressure and normalized by free-stream dynamic prassure) at tranducer K16 between a cavity
with the coarse sawtooth 35 spoiler and a cavity with the fine sawtooth 38 spoiler. Although the
noise reduction using the coarse sawtooth is beneficial at subsonic conditions, their is no clear
advantage of coarse over tina sawtooth in the supersonic regime, where the presence of shock
structures ovarwheim turbulence.

The authors’ AFATL/AEDC data base contains over a thousand spectra represanting many
combinations of spoilers, doors, and ramps. Clearly it would be impossible in a survey paper to
discuss more than a few cases. The data discussed herein tend to substantiate results reported by
others. What is new is the compilation into one data base of experimental data defining the many
intgractions in the flow field caused by the presence of multiple physical features.

CFD CALCULATIONS

Using a CRAY XMP computer, Suhs at the AEDC has predicted flow fieids in empty cavities (Ref.

9). His technique has baen to use a time-accurate full Navier-Stokes solver with viscosity effects
confined to a thin layer adjacent to the surfaces. A stretched Cartesian grid was also used,
increasing the density of grid cells close to the model surfaces, and increasing cell size in regions
well away from the walls (Fig. 26). Good agreement with measurements has been obtained (Fig.
27), but solutions for an empty cavity have required 10 to 20 hours of computation to complete.
Sketches of the mass flux through the plane of a cavity opening are shown in Fig. 28. The sketches
were recorded at 0.4 of a time characteristic (0.00085 sec) intervals (see Ref. 9 for more details).
At present, grids for a store model and a sting are being added, with the concomitant increase in
caiculation time - upwards of 40 hours of CPU time. Current flow models include a modified .
Baldwin-Lomax turbulence model. Further discussion of CFD results will be left to other authors.

SCHLIEREN EVIDENCE - SUPERSONIC REGIME

Ouring a series of tests at supersonic conditions, scme schlieren movies were recorded at a rate of
4,000 frames/sec. Visual evidence of laminar-to-turbulent-to-laminar behavior was observed as the
boundary-layer flow moved downstream from over the plate to over the cavity (Fig. 29). Although
this behavior was not expected, the effect on cavity pressure distributions and acoustic tonal
amplitudes was not detected. In fact, at a constant unit Reynolds number of approximately 3 x 106
per foot, the overall (rms) level at transducer 16 tended to peak in the transonic rcgime and
decrease as Mach number increased. Furthermore, tonal amplitudes abate as Mach number
increasas, so that in the supersonic regime only broadbard noise is evident (Fig. 30). .

CONCLUDING REMARKS

Cavity aeroacoustics - a challenge of recurring practical interest for the past 60 years - has yielded
stubbornly to researchers to date. The engineering method of Rossiter for predicting rnodal
frequencies to be expected in certain simple ractangular cavities exposed to grazing transonic flow
provides adequate. if not perfect, guidance to the designer. Beyond the limits of Rossiter's data
basa in cavity geometry and flow velocity, however, the method falters. Although there is at ieast a
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possibility of predicting modal frequencies, there is unfortunately no easily applied method of pre-
dicting modal amplitudes. Not only ar@ wind tunnel tests conducted at incorrect Reynolds numbers,
but scale effects on acoustic leve's have aiso besen observed. CFD solutions are being reported, but
the compilex grids and turbulence models required represent computation-intensive demands on
expensive Class VI computing machines. Efforts underway at the AEDC to organize and correlate
existing data could produce at least a first-order ampiituda-prediction technique within a year.

in the meantime, a large data base of cavity pressure measurements - both static and unsteacy -
and store loads has been assembled at the AEDC under the sponsorship of AFATL. From these
data, some helpful goneral trends have been observed, to wit: 1) spoilers mounted at the leading
edge of a cavity opening are effective in suppressing aeroacoustic phenomena only in the subsonic-
t'ansonic regime, losing effectiveness at supersonic conditions, 2) the effectiveness of a spoiler is
independent of square leading-edge door type (single-fold or bifold), but the effectiveness is
weakened by the strong flow field around a tapered leading-edge door, especially as velocity
increases, and 3) the overall (rms) acoustic amplitude in a cavity is not a function of Reynolds'
number.

Fortunately, safe separation of stores jettisoned from a cavity can be assured if sufficient outward
velocity and pitch rate are impartod to the stere. In other words, the shear layer can be defeated if
the residence time of the store passing through it is minimized, so that inertia dominates. Whether
the structural and functional integrity of the bodies in the cavity can be assured after the imposition
of the necessary forces and acceleration is quite another question, as is the question of survival of
exposure ta acoustic tonas on the order of 170 db. These questions ars beyond the scope of this

paper.
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a. Clean cavity
Fig. 29. Schlieren photagraphs of flow aver a transitional cavity (LH = 9.0) equipped with
various spoiler and door configurations.




b. Cawity with 35 sawtooth spoder at leading adge of cavity
Fig. 29. Continued. .
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C. Cawty with SC 90 doors and 3§ sawtooth spoiler
Fig. 29. Continued.
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d. Cawvity with TC 120 doors and 18§ sawtooth spoiler
Fig. 29. Concluded.
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Fig. 30. Variation with Mach number of tonal amplitiudes and overall sound pressure levels in a
deep cavity (L'H = 4.5) with no spoilers or doors.
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